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Abstract— Virtual reality (VR) simulation can improve the
outcomes of percutaneous nephrolithotomy (PNCL) - a surgery
to extract kidney stones using ultrasound (US) or fluoroscopy
image guidance. These simulators almost exclusively employ
fluoroscopy, and no commercial VR simulator is available for
US-guided PNCL (usPCNL). In this paper, we proposed the first
step towards developing an usPCNL simulator that integrates
a volumetric US model of the patient’s anatomy derived from
parallel 2D computed tomography (CT) scans.

A critical challenge in US image generation from CT scans
is that the limited spatial resolution of CT slices may lead
to inaccuracies in the simulated US images. The proposed
algorithm interpolates successive CT images to create an
augmented dataset with increased spatial resolution. Each CT
slice is then converted into a US image based on principles
of linear acoustics and spatial impulse response. These images
are then combined to form two different volumetric US images,
one derived from the original sparse CT scans, and one created
with the augmented data. From these volumetric US images,
new images can be formed along arbitrary imaging planes
not captured in the original CT data. The obtained simulated
images are compared with their corresponding real US images
acquired experimentally, and further evaluated quantitatively
using normalized root mean square error (NRMSE) and dice
similarity coefficient (DSC). The results reveal an NRMSE of
0.235 + 0.051 and a DSC of 0.9139 + 0.062, showcasing a close
resemblance between simulated and actual ultrasound images.
Additionally, we show that denser CT scan data leads to a
25% improvement in image quality based on peak signal-to-
noise ratio compared to the original dataset. This initial work
is laying the foundation for the development of the usPCNL
simulator, which could potentially have significant benefits for
training and enhancing skills in this medical procedure.

I. INTRODUCTION

Percutaneous nephrolithotomy (PCNL) is the surgical
standard to treat large (> 2cm) or complex renal calculi.
During PCNL, access to the kidney is established through
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a percutaneous tract in the back or side which enables
passage of a nephroscope used to visualize, fragment, and
remove the kidney stones. Accurate puncture through the
papilla of the desired calyx, to create percutaneous access for
stone disintegration and removal, is essential. Preoperative
computed tomography (CT) imaging is required to identify
anatomical relationships to the kidney and to plan a trajectory
for percutaneous access. Fluoroscopy or ultrasound image
guidance is used intraoperatively to establish percutaneous
access to the kidney. Despite being a common minimally
invasive urological procedure, PCNL has a steep learning
curve and is associated with a risk of complications such
as bleeding, renal pelvis perforation, and risk of injury to
surrounding organs, such as colon and spleen [1]. Real time
biplanar fluoroscopy is the most frequently used technique
for percutaneous puncture. However, fluoroscopy imaging
is disadvantaged due to radiation exposure and single-plane
imaging, and it does not provide visibility of adjacent organs
such as the pleura and bowels, posing a risk of accidental
injury. Ultrasound-guided PCNL (usPCNL) has several ad-
vantages over fluoroscopy owing to its non-ionizing nature,
low cost, and higher frame rate. Ultrasound offers a clearer
delineation of adjacent structures including the anterior and
posterior calyces [2]-[4]. Despite these benefits, the adoption
of usPCNL has been limited in North America, primarily
due to the lack of training opportunities [19]. In addition,
usPCNL requires an advanced skill level to interpret the
ultrasound images, and identify the guide-wire and adjacent
anatomical structures, while simultaneously coordinating the
hand steering the wire and the hand maneuvering the ul-
trasound probe [13], [14]. Medical education increasingly
relies on simulation-based training that accurately replicates
such procedures [3], [5]. Prior research has explored various
simulators for PCNL, spanning physical models to virtual
reality environments [6]—-[8]. However, existing solutions are
mostly based on fluoroscopy and no virtual reality simulator
has been proposed for usPCNL, mainly due to the prevalence
of fluoroscopy use [9]-[12]. Some of these simulators, such
as Marion Surgical’s PCNL trainer [3], [4] convert pre-
operative CT images into a 3-dimensional (3D) model that is
imported into the simulator, allowing urologists to practice
the procedure on patient-specific data before entering the
operating room [17], [18]. To develop an equivalent usPCNL
simulator that leverages the same existing set of preoperative
data, methods to simulate volumetric ultrasound images from
existing sparse 2D CT scans are needed [15], [16].
Ultrasound image simulation from CT has garnered signif-
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icant attention in recent years [19]-[25]. Hostettler et al. [20]
proposed a low-cost ultrasound simulator for ultrasonography
training. Their method combines texture images derived
from CT scans with echo maps and absorption images to
simulate ultrasound images. However, their approach lacks
speckle information. Burger et al. [21] simulate an ultra-
sound model of the tissue based on CT characteristics by
propagating rays through beamforming and backscattering.
Reichl et al. [22] use parallel programming for real-time
simulation of ultrasound images. Karamalis et al. [23] model
ultrasound wave propagation in tissue using the Wester-
velt equation via a finite difference scheme for real-time
simulation. Even though various methodologies have been
proposed for simulating ultrasound from CT images, most
lack realism, accurate depth perception, and versatility in
training scenarios [24], and are often limited to 2D images
[21]. A critical challenge in ultrasound image simulation
from CT scans is the limited spatial resolution of CT slices,
which may lead to inaccuracies in the simulated ultrasound
images. In this case, image interpolation techniques may be
used to augment the dataset, resulting in denser and more
comprehensive CT data. This enhancement may allow for
a more accurate representation of tissue structures in the
corresponding simulated ultrasound images.

To address this challenge, the development of realistic
simulation platforms is imperative for training healthcare
professionals effectively. In this paper, an approach for
volumetric ultrasound image simulation from 2D CT scans,
aimed at enhancing the realism and effectiveness of PCNL
training simulators is presented.

This paper addresses the first step towards creating a
usPCNL simulator by generating a volumetric ultrasound
image from sparse 2D CT scans that can be sliced along any
arbitrary imaging plane. In our approach, firstly, parallel 2D
CT scan slices are interpolated to augment the dataset, result-
ing in denser and higher-resolution CT data. From each slice
in the augmented dataset, a scattering map with normally
distributed strength is created. Simulations are based on the
principles of linear acoustics and computation of the spatial
impulse response. Speckle is simulated by randomly placed
scatterers with strength randomly chosen from a normal
distribution. The Tupholme-Stepanishen method is then used
for calculating pulsed ultrasound fields for both the pulsed
and continuous wave cases for different transducers, from
which the corresponding ultrasound image is created. These
simulated 2D ultrasound images are arranged in a denser 3D
voxel, thereby extending data formation to include CT slices
not captured in the original dataset. Finally, we show that
from the volumetric image, a 2D ultrasound image can be
created along an arbitrary imaging plane and displayed in
real-time.

To validate the concept, a set of CT scans and the cor-
responding ultrasound images are acquired from a phantom
tissue. The simulated ultrasound images are compared with
the real images. The results reveal that using denser CT
scans leads to better-quality ultrasound images. The creation
of 3D volumetric ultrasound datasets opens up possibilities

for simulating images in directions that were not originally
captured in the CT scans. This advancement is a crucial
first step in the development of a realistic training simulator
environment for usPCNL. Such a simulator would provide
trainees with a more immersive and realistic experience,
ultimately leading to improved proficiency and patient out-
comes in usPCNL procedures. The paper is structured as
follows: Section II elaborates on the methodology employed
for simulating ultrasound images from CT, the formation of
3D ultrasound in section III, followed by the definition of
image quality metrics used for comparison in Section IV.
Section V presents the results, followed by a discussion on
the implications and future prospects in Section VI.

II. VOLUMETRIC ULTRASOUND IMAGE
SIMULATION FROM 2D CT SCANS

We consider having a set of parallel 2D CT scans obtained
from a given tissue, as well as the corresponding ultrasound
images acquired with a curvilinear transducer at the same
location of each CT slice. Fig. 1 shows an overview of
the methodology employed to create a dense volumetric
ultrasound image from sparse 2D scans. First, bi-linear
interpolation is used to interpolate two consecutive scans to
augment the data. Each scan is individually converted into
a 2D ultrasound image using a physics-based model. The
simulated ultrasound images are then compared with their
corresponding real images. The ultrasound images are then
combined in a volumetric image, which allows new images to
be generated along an arbitrary imaging plane. The following
subsections describe each of these steps in greater detail.

Simulated ultrasound images from
Original CT scan images

Original CT scan images

volumetric ultrasound data matrix

Ultrasound
image
simulation
using Field
I

Simulated ultrasound Images
from original and interpolated
CT scan images

Original CT scan with interpolated

CT images Denser volumetric ultrasound data

matrix

Fig. 1.  Workflow to generate volumetric ultrasound images from 2D
CT scans. In (a), sparse 2D CT scans are interpolated to improve spatial
resolution. (b) displays the simulated ultrasound images generated from each
CT slice. (c) shows the ultrasound volumetric data formed from the original
CT data. The interpolated CT set then follows the same workflow in (d),
(e), and (f). The use of interpolated CT slides leads to improved volumetric
ultrasound images along an arbitrary imaging plane.

A. CT Images Pre-processing

Since CT slices are rectangular and have a much larger
area than the curvilinear ultrasound images, the first step
in the algorithm is to specify a region of interest in each
CT slice. This region of interest (ROI) corresponds to the
imaging plane of the ultrasound transducer. For PCNL, we
consider a curvilinear ultrasound transducer with a width of
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60 mm and a fixed penetration depth of 180 mm. Thus,
the ROI is a sector image at the centre of the slice with
a radius of 180 mm. This sector image, which is in cartesian
coordinates, is remapped to a rectangle image by doing polar
to Cartesian conversion as done in Fig. 2(a).

The trapezoidal ROI image is then transformed into a
rectangular image using polar-to-Cartesian conversion, see
Fig. 2(b)-(c). This is done for two reasons: 1) Converting the
ROI image shape to a rectangle allows for the application of
the same simulation method to both linear and curvilinear
array transducers, and 2) the pixel spacing in CT images
is usually higher than the ultrasound signal wavelength. To
transform the trapezoidal ROI image into a rectangular image
using polar-to-Cartesian conversion, we need to map each
pixel from the polar coordinate system of the trapezoidal ROI
to the Cartesian coordinate system of the rectangular image.
This transformation involves converting the radial distance r
and angular position # of each pixel to Cartesian coordinates
(z,y) as follows:

x = rcos(f), y = rsin(6) (D

where x and y are is the horizontal and vertical coordinates
of the pixel in the rectangular image, r is the radial distance
from the origin to the pixel in the trapezoidal ROI, 6 is the
angle in radians from a reference axis to the pixel in the
trapezoidal ROIL. These equations allow us to express any
pixel in the trapezoidal ROI image in terms of its Cartesian
coordinates (z,y) in the rectangular image, effectively trans-
forming the shape from a trapezoid to a rectangle. To perform
the reverse process, converting rectangular coordinates (z, y)
back to polar coordinates (r,6), we use:

= VTS,

where /22 + 92 calculates the Euclidean distance from the
origin to the point, giving the radial distance r and atan2 (%)
calculates the angle 6 using the atan2 arctangent function,
taking into account the signs of x and y to determine the
correct quadrant. Following this step, to generate high-quality
volumetric ultrasound images from sparsely acquired 2D CT
images, the ROI of two consecutive images is interpolated to
create new images between the two samples using a straight-
forward bilinear interpolation [1]. Given two consecutive
original 2D slices, new slices are generated by interpolating
pixel values between them. This process involves generating
intermediate slices between the original ones to increase
the density of the volume. One common method, bilinear
interpolation, calculates pixel values for the new slices based
on those of the neighbouring pixels in the original slices.
Given a point (z,y) in the new slice, the pixel value f(z,y)
can be interpolated from the surrounding two pixels (x1,y1),
(21,92), (x2,91), and (22,y2) in the original slices:

flz,y) =(1 —a)(1 = B)f(z1,y1) + a(l — B) f(w2,y1)
+(1 = a)Bf(z1,y2) + aBf(x2,y2)

f = arctan (%) (2)

3)
where o = (z —21) /(@2 — 1) and 8 = (y —y1)/(y2 — y1)-

Fig. 2. Images showing the input CT slice from a phantom. The region of
interest is marked with a black solid line in (a). The ultrasound transducer
is assumed to be at the center of the slice. The region of interest extracted
from CT is shown in (b), before it is converted into a rectangular image in

(©).

B. 2D Ultrasound Simulation

Ultrasound image simulation from CT data is performed
across all interpolated and original axial CT slices, assuming
the transducer is consistently positioned at the center of
each slice. The anatomies of the tissue’s ultrasound images
scattering strength of the region of interest is created. This
map then determines the factor multiplied by the scattering
amplitude generated from a Gaussian distribution. Currently,
the elevation direction is made by making a 15 mm thickness
for the scatter positions, which are randomly distributed in
the interval. The simulations are done by simulating and
summing the field from a collection of point scatterers. A
single RF line in an image can be calculated by summing the
responses from a collection of scatterers. The final simulated
image consists of 128 RF(radio frequency) lines with 0.7
degrees between lines. This is then interpolated to form the
B-mode ultrasound image using principles of linear acoustics
to generate ultrasound images based on tissue characteristics
derived from CT scans as follows:

Scattering Map Generation with Boundaries: First, a
bitmap image representing the scattering strength of the
region of interest (ROI) is created. This map determines the
factor multiplied by the scattering amplitude generated from
a Gaussian distribution, modelling the density and speed of
sound perturbations in the tissue. Simulated boundaries are
introduced by defining lines in the scatterer map along which
strong scatterers are placed. This step enhances the realism
of the simulated ultrasound images.

Random Scatterer Distribution and Field Simulation: Next,
a large number of scatterers (e.g., 1,000,000) are randomly
distributed within the ROI. The scatter amplitude and stan-
dard deviation are determined by the scattering map, ensuring
variability in scatterer properties. Then, we calculate and sum
the acoustic pressure field p(z,y, z,t) resulting from this
collection of point scatterers at a point in space and time
(z,y,z) at time ¢ as

N
p(x’ y)z’ﬁ) = ZAie_jQ""fT?\/($—$i)2+(y—yi)2+('z_zi)2
=1

“)
where N is the number of scatterers, A; is the amplitude of
the i*" scatterer, f is the center frequency of the transducer,
¢ is the speed of sound in the medium, and (z;,y;, z;) are
the coordinates of the i scatterer. The resulting acoustic
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pressure field mimics the behaviour of ultrasound waves
propagating through tissue. The sum represents the contri-
bution of each scatterer to the overall acoustic pressure at a
given point.

Calculation of Scattering Strength: The scattering strength
of each scatterer can be determined based on the tissue
properties at its location. Let’s denote the scattering strength
as o; for the i*" scatterer. This can be calculated using a
scattering map S(z,y) as follows:

oi = S(xi, i) o)

where (z;,v;) are the coordinates of the 7** scatterer.

Gaussian Distribution of Scatter Amplitude: The scatter
amplitude A; of each scatterer can be randomly chosen from
a Gaussian distribution with mean p; and standard deviation
o;. This ensures variability in scatterer properties, mimicking
the natural variations in tissue characteristics. The amplitude
of the *" scatterer is given by:

A; ~ N (s, 04) (6)

where N'(u;,0;) represents a Gaussian distribution with
mean y; and standard deviation o;.

Calculation of RF Line: To calculate a single RF line in
the ultrasound image, the responses from a collection of
scatterers are summed. Let us denote the RF line signal
at depth 2z as s(z). This can be calculated by summing
the contributions from all scatterers within the four imaging
plane:

N
S(Z) = ZAie_j27rfT9\/(wi_$6)2+(yi—yc)2+z2 (7)
i=1

where (z.,y.) are the coordinates of the transducer center,
fo is the center frequency of the transducer, and c is the
speed of sound in the medium.

Interpolation for B-Mode Ultrasound Image: The final
simulated ultrasound map consists of multiple RF lines. Each
RF line is calculated by summing the responses from a
collection of scatterers. Once the RF lines are calculated,
they are interpolated to form the B-mode ultrasound image.
Bilinear interpolation is commonly used for this purpose.
Given the RF lines at discrete depth intervals, new RF lines at
intermediate depths are generated by interpolating the values
between adjacent RF lines.

These equations implemented using the Field Il MATLAB
toolbox, enable the simulation of realistic ultrasound images
can be simulated from the original CT data. The next step
is to combine the created 2D ultrasound images to form a
volumetric image, from which new images can be created
along arbitrary imaging places not originally captured by the
CT scans.

I1I. 3D ULTRASOUND SIMULATION

Once the ultrasound images are generated, they are stacked
together along the z axis to form a 3D voxel. Each voxel
element contains the pixel values corresponding to a partic-
ular location in the tissue volume. The density of the voxel

increases with the number of interpolated slices, resulting in
a denser representation of the tissue.

Given a set of 2D ultrasound images, I;(x,y) where ¢ =
1,2,..., N, each representing a cross-sectional view, a 3D
ultrasound volume V' (z, y, z) can be constructed by stacking
these images along the z-axis:

N
V(z,y.2) =Y Li(z,y) 6(z— 2) ®)
=1

where z; represents the z-coordinate of the i*" image plane,
and 0 is the Dirac delta function. To form a 2D slice from the
3D voxel along a different imaging plane, a process called
slicing is performed. Slicing involves selecting a plane within
the 3D volume and extracting the pixel values along that
plane. This can be achieved by specifying the orientation
and position of the plane relative to the voxel grid.

The next step is to extract a 2D slice from the 3D voxel
along a given imaging plane, which we define by vector n
normal to that plane, whose tail is at (xq, Yo, 20). If (z,y, 2)
is any point on the plane, then the vector (x —xg,y — Yo, 2 —
zo) lies entirely inside the plane and so must be perpendicular
n, that is,

n‘<17*$0,y7y0,272’0>:0 (9)
If ng,ny,n, are the components of n, then

ng(z — x0) +ny(y — yo) + n2(2 — 20) =0 (10)

or rather:

Y

where d = n,xo + nyyo + n. 2. Once the plane is defined,
it can be discretized into pixels that take the value of the
closest pixel in the 3D volume. After all pixels on the plane
are populated, the resulting 2D image from the 3D voxel can
then be interpolated using (3).

NgT +nyy +n,z=d

IV. PERFORMANCE METRICS

In the field of image analysis and pattern recognition, eval-
uating the similarity between two images is a fundamental
task. Once ultrasound images are generated from CT slices,
performance metrics can be defined to compare the quality
of the simulated ultrasound images against the ground-truth
ultrasound images acquired at the same location as the input
CT scan. Three performance metrics will be used.

1) Normalized Root Mean Square Error (NRMSE):
NRMSE, is a dimensionless metric used for comparing an
image with a reference image, calculated as:

M N 2
1 in(m,n) — Ief(m,n)]
RMSE =
M-N mzzl n; Imam - ImML

(12)
where m and n are the vertical and horizontal coordinates
of a given pixel, and Ij;, and I represent the input and
reference images, respectively, with dimensions M - N, and
Inax and Iy, denote the maximum and minimum pixel
values in the images, set to 1 and O, respectively.
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2) Dice Similarity Coefficient (DSC): DSC is a widely
used metric for measuring similarity between two images.
The DSC is defined as the ratio of twice the intersection of
two sets to the sum of the cardinalities of the two sets. In the
context of image segmentation, it quantifies the agreement
between the segmented regions and ground truth as

| X+ Y]
AX N Y|

where X and Y represent the sets of pixels in the segmented
region and ground truth, respectively, and | X | and |Y'| denote
the cardinalities of sets X and Y, respectively. The DSC
is compared between the ground truth ultrasound image
obtained experimentally and simulated ultrasound images.

3) Peak signal-to-noise ratio (PSNR): To evaluate how
denser data improves volumetric ultrasound image simula-
tion, PSNR is computed between two equivalent 2D ul-
trasound images taken from each volumetric image. The
PSNR in decibels between two images is used as a quality
measurement between the image slice taken from volumetric
data created from sparse CT data, and the corresponding
image slice taken from the volumetric ultrasound image
simulated with augmented, interpolated CT slices along the
same random imaging plane. The higher the PSNR, the better
the quality of the reconstructed image. It can be calculated
as:

DSC = (13)

RQ
PSNR = 101ogy, (> (14)
€
where R is the maximum fluctuation in the input image data,
and e is the mean square error

~ Yunlli(mn) = Ir(m,n)]?
€= M x N

in which M and N are the number of rows and columns in
the input image, respectively. While both the mean-square
error and PSNR are used to compare image compression
quality, the mean-square error represents the cumulative
squared error between the compressed and original image.

(15)

V. RESULTS AND DISCUSSION

A set of 2D ultrasound images and the corresponding
2D CT scans are acquired from a triple imaging modality
abdominal phantom (from CIRS, Model 057A), measuring
26 cm x 12.5 cm x 19 cm, which accurately represents
an adult abdomen and is compatible with CT, ultrasound,
and MRI imaging modalities. Its internal structures include
the liver, partial lung, portal vein, two partial kidneys,
abdominal aorta, vena cava, simulated spine, and six ribs,
along with eight lesions. Ultrasound images of the phantom
were acquired using a SONIX TOUCH Q+® scanner (Ul-
trasonix, Analogic Corporation, Peabody, MA, USA). These
ultrasound images serve as the ground truth for comparison
with ultrasound images simulated from CT data using Field
1L

CT images of the phantom are acquired with a spacing
of 1 mm and thickness of 1.25 mm. To realize a denser
volumetric ultrasound simulator, the 1 mm spacing between

Fig. 3. Comparison between (a) ground-truth CT slice with chosen
sector ROI marked with a black solid line, (b) ultrasound image generated
through Field II, and (c) ground-truth ultrasound image that was acquired
experimentally.

the slices is further reduced to 0.5 mm using the interpolation
described earlier. To this end, 25 axial CT slices were
chosen from the database and subjected to pre-processing.
Bilinear interpolation was employed between each pair of
adjacent slices to generate an additional slice in between.
This process was repeated for every pair of adjacent slices,
resulting in the generation of another 25 CT slices. This
augmented dataset provides denser, higher volumetric data.
These original and interpolated CT data are further used for
simulating ultrasound data, which is then used for forming
a volumetric simulator for PCNL training purposes.

In the simulation, the transducer array is positioned at the
centre of an axial CT slice, and a curvilinear transducer C2-5
is utilized with specifications outlined in Table 1. The depth
of ultrasound signal penetration in both original database
images is standardized at 180 mm.

TABLE I
PARAMETERS USED FOR ULTRASOUND SIMULATION FROM CT SCANS.

Parameter Value
Operating frequency 2.5 MHz
Bandwidth 2-5 MHz
Transducer element pitch ~ 0.47 mm
Number of elements 128
Speed of sound 1540 m/s
Sampling frequency 40 MHz

Fig. 3a shows an axial CT slice from the database. The
chosen sector ROI within the CT slice is marked with a black
solid line. The anatomy of the ROI consists of a top fat layer
(dark), muscle layer (slightly brighter than fat), liver with two
lesions (dark round circles) and hepatic vein, vertebra (bright
region), abdominal aorta, vena cava (two round regions above
vertebra), and surrounding soft tissue (dark region) with a
portion of kidney in them.

One can observe that the bone-tissue interface has the
highest weighting. The ultrasound simulations do not ac-
count for attenuation, making bones visible. However, the
difference between the two images is small, although in
the reference image acquired experimentally the ultrasound
attenuation is large in bones. Hence, the region below the
bone-tissue interface is darker than the bone in the refer-
ence image. The images are compared quantitatively using
normalized RMSE and DSC as metrics for 25 different
axial CT slices (see Table II). Since the experimentally
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TABLE I
PERFORMANCE METRICS FOR SIMULATION

SI. no.  Parameters  Reference vs simulated image
1 NRMSC 0.235 + 0.051
2 DSC 0.9139 + 0.062
TABLE III

PERFORMANCE METRICS FOR VOLUMETRIC DATA

Sl.no
1 PSNR

Denser Volume Data

24.27 £ 2.56

Parameter ~ Original Volume Data

18.013 £ 2.19

obtained ultrasound image from the same ROI is available
from ultrasound scanning of the phantom, the comparison
is also made between the ultrasound images simulated from
CT images and the ground truth ultrasound images (Fig. 3).
Again, the results obtained show that the actual ultrasound
and simulated ultrasound images are similar. All of the
images are displayed at 60 dB dynamic range.

Two volumetric images were created. The first only in-
cludes the original 25 slices, whereas the second set includes
the original slices and the additional 25 interpolated slices,
for a total of 50 slides. Each volumetric image is then
sliced along the same 10 arbitrary imaging planes, and the
corresponding 2D image is created following the procedure
described earlier. An example is seen in Fig. 4 for 3 of
these planes. PSNR is computed between the corresponding
image slices taken from each volumetric images to evaluate
the improvement quantitatively. The results are tabulated in
Table III. The higher the PSNR, the better the quality of the
reconstructed image. The results show a 25% improvement
in PSNR when using the denser volumetric image.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a method to generate volumetric
ultrasound images from 2D CT scans, laying the groundwork
for the creation of a virtual reality simulator tailored specif-
ically for usPCNL. Our approach addresses the challenge
of limited spatial resolution in CT scans by employing
interpolation techniques to augment the dataset, resulting
in denser and higher-resolution CT data. These augmented
CT scans were then utilized to simulate ultrasound images
based on principles of linear acoustics and spatial impulse
response computation. Performance evaluation of our image
generation algorithm using normalized RMSE, DSC, and
PSNR demonstrates its effectiveness in accurately simulating
ultrasound images from CT data. The comparison between
simulated and ground-truth ultrasound images shows mini-
mal differences, indicating high fidelity in our simulation.
Our results also suggest that denser CT scan data led to a
significant improvement in ultrasound image quality obtained
along an imaging plane not captured in the original data.

The proposed method lays the foundation for the devel-
opment of a realistic simulator for usPCNL training. By
simulating volumetric ultrasound images from CT scans, our

A D e o)
E EE BB B BB

Fig. 4. (a) Shows ultrasound volumetric data formed from the original
25 CT slices, (b) Ultrasound image formed from the slice shown in orange
in (a), (c) ultrasound image formed from the slice shown in blue in (a),(d)
ultrasound image formed from the slice shown in green in (a), (e) denser
ultrasound volumetric data formed from ultrasound images corresponding
to 50 CT slices, (f) ultrasound image formed from the slice shown in orange
in (e), (g) ultrasound image formed from the slice shown in blue in (e), and
(h) ultrasound image formed from the slice shown in green in (e).

approach will enable trainees to practice usPCNL proce-
dures on patient-specific data before entering the operating
room, ultimately enhancing their skills and improving patient
outcomes. Furthermore, the ability to generate ultrasound
images along arbitrary imaging planes not originally captured
in the CT scans expands the versatility and effectiveness of
the simulator for training scenarios.

Our current approach focuses on simulating ultrasound
images from static CT scans. Expanding this methodology

3713

Authorized licensed use limited to: Carleton University. Downloaded on January 22,2025 at 16:41:06 UTC from IEEE Xplore. Restrictions apply.



to incorporate dynamic anatomical changes, such as tissue
deformation and organ motion, would further enhance the
realism of the simulation platform. Furthermore, the scala-
bility of our approach should be explored to accommodate
variations in patient anatomy and pathology. Customization
options tailored to individual patient cases would enable
personalized training scenarios, catering to diverse clinical
situations encountered in real-world practice. Lastly, collabo-
rative efforts with medical educators and practitioners would
be invaluable in refining the image-processing functionality
and ensuring its alignment with training objectives and
clinical standards. By incorporating feedback from experts in
the field, we can iteratively improve the simulation platform
to better serve the needs of trainees and ultimately contribute
to improved patient outcomes in usPCNL procedures. More-
over, we intended to explore machine learning techniques
to personalize training scenarios based on individual trainee
performance and learning needs.

In conclusion, this preliminary work represents an impor-
tant step towards the development of an ultrasound 3D volu-
metric framework for usPCNL training, which can ultimately
improve patient outcomes and safety in clinical practice.
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